DEVOIR COMMUN DE SECONDE

Durée 2h00. Noté sur 20. La calculatrice est autorisée. Le sujet comporte 4 pages.

Exercice 1: Pour chaque question, entourer la bonne réponse.

Une et une seule bonne réponse.

Barême: pas de réponse 0;bonne réponse:+1;mauvaise réponse:-0,5

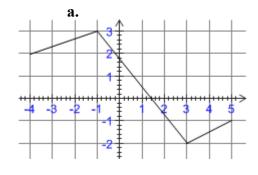
1.
$$\frac{4-3}{6}+1=...$$

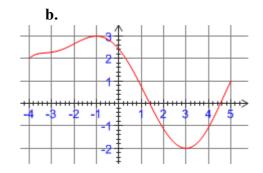
- **a.** 1,16 **b.** 1,17 **c.** $\frac{7}{6}$
- **d.** 4,5

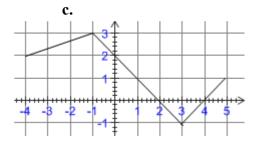
2.
$$(2+\sqrt{2})^2-3=...$$

a. 1 **b.** $4\sqrt{2}+3$ **c.** 8,65

3. Si
$$x = \frac{4}{11}$$
 alors


- **a.** x=0.36 **b.** x=0.4


- **c.** $x \in]0,36;+\infty[$ **d.** $x \in]0,362;0,363[$
- **4.** Trouver le plus petit ensemble de nombre contenant $\frac{3}{10}$:


- **5.** Voici le tableau de variation d'une fonction f:


x	-4	-1	3	5
f(x)	2	3	-2	1

Quel est la seule représentation graphique possible pour f?

Exercice 2

Des joueurs se rassemblent pour participer à un concours de fléchettes. Avant de concourir, les joueurs doivent passer des éliminatoires. Voici les scores obtenus par les joueurs:

	1er Lancer	2nd lancer	3eme lancer	4eme lancer	5eme lancer	6eme lancer	7eme lancer	8eme lancer
Joueur 1	15	12	25	18	15	15	20	17
Joueur 2	26	8	15	20	14	26	12	13
Joueur 3	19	18	19	12	14	13	19	19
Joueur 4	29	15	16	28	11	17	11	10
Joueur 5	4	16	15	16	24	26	16	

Partie A

- 1. Calculer la moyenne du joueur1.
- 2. Calculer la médiane du joueur 2.
- **3.** Calculer l'étendue du joueur 3.
- **4.** Calculer le mode du joueur 4.
- 5. Sachant que la moyenne du joueur 5 est de 16,75 calculer le score obtenu à son 8eme lancer.

Partie B

Pour savoir si un joueur est admis ou refusé, le président a le choix entre quatre règles :

Règle A: Un joueur est qualifié si l'écart entre son plus petit score et son plus grand score est supérieur à 20.

Règle B: Un joueur est qualifié si sa moyenne est supérieure à 17 points.

Règle C: Un joueur est qualifié si son score le plus fréquent est supérieur à 25.

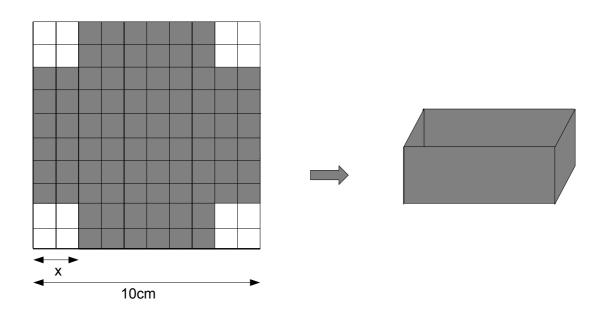
Règle D: Un joueur est qualifié si au moins 50% de ses scores sont supérieurs ou égaux à 18.

1. Compléter le tableau ci-dessous:

	Moyenne	Médiane	Etendue	Mode
Joueur 1		16,000	13,000	15,000
Joueur 2	16,750		18,000	26,000
Joueur 3	16,625	18,500		19,000
Joueur 4	17,125	15,500	19,000	
Joueur 5	16,750	16,000	22,000	16,000

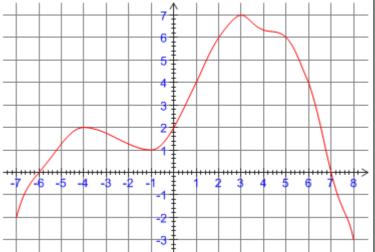
2. Pour chaque règle, déterminer les joueurs qualifiés.

Exercice 3


Voici la courbe représentative d'une fonction f.

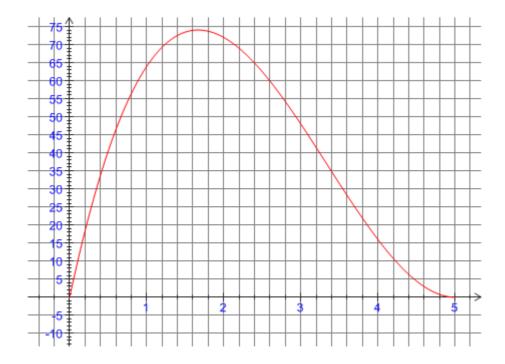
Par lecture graphique, répondre aux questions suivantes :

- **1.** Donner **l'ensemble de définition** de la fonction *f* .
- 2. Quelle est l'image de -1 par f?
- 3. Donner f(6).
- **4.** Quels sont les éventuels **antécédents de 2** par cette fonction *f* ?
- 5. Quels sont les éventuels antécédents de -4 par cette fonction f?
- 6. Résoudre l'équation f(x) = 4
- 7. Résoudre l'inéquation f(x) < 0
- 8. Résoudre l'inéquation $f(x) \ge 6$
- **9.** Pour quelle valeur de x la fonction admet –t-elle un maximum ? , et combien vaut ce **maximum** ?
- **10.** Pour quelle valeur de x la fonction admet –t-elle un minimum?, et combien vaut ce **minimum**?
- 11. Dresser le **tableau des variations** de la fonction f.


On dispose d'un carré de métal de 10cm de côté. Pour fabriquer une boite sans couvercle, on enlève à chaque coin un carré de côté x (cm) et on relève les bords par pliage. La boite obtenue est un pavé droit.

Rappel: Le volume d'un pavé droit dont les arêtes mesurent a,b et c est donné par la formule : V=abc

Partie I


- 1. Calculer le volume de la boite obtenue si x=2
- **2.** Quelles sont les valeurs possibles pour la variable x?

- 3. On note V la fonction qui à x associe le volume de la boite exprimé en cm^3 . Démontrer que : $V(x) = 100x 40x^2 + 4x^3$
- **4.** Retrouver le résultat de la question 1 à l'aide de la fonction V.
- 5. Calculer V(3).
- 6. Calculer l'image de $\frac{5}{3}$ par V (donner la valeur exacte puis la valeur approchée arrondie à 10^{-2})

Partie II

Les réponses aux questions de cette partie seront trouvées à l'aide de la représention graphique de la fonction V donnée ci-dessous (on laissera apparaître les tracés utiles) :

- 1. Pour quelle(s) valeur(s) de x obtient-on une boite de volume maximal ? Quel est le volume maximal de la boite ?
- 2. Combien de boite(s) ont un volume de 50 cm³ ?
- 3. Quelles sont les valeurs de x pour lesquelles le volume de la boite est supérieur ou égale à 60 cm³ ?