Exercice 1

Résoudre dans R² les systèmes suivants dans R² en cochant d'abord la méthode de résolution qui vous parait la plus appropriée (méthode par combinaisons linéaires ou par substitution).

Proposez une méthode de vérification de vos solutions.

Système 1 :
$$\begin{cases} x = 2y \\ 2x + 3y = 1 \end{cases}$$

Combinaisons linéaires Substitution

Swatama 2 . s	$\int x + 2y = 5$
Système 2 : 5	-x + y = 0

Combinaisons linéaires Substitution

Solution(s):....

Solution(s):.....

n	y = 3x + 4
Système 3 : 5	y = -2x + 5

Combinaisons linéaires Substitution

Solution(s):....

G	$\int 4x + y = 2$
Système 4	$\begin{cases} 4x + y = 2 \\ 2x + 3y = -4 \end{cases}$

Combinaisons linéaires Substitution

Solution(s)	·	
(.,)		

Système 5 :
$$\begin{cases} 2x + 4y = 3(5 - 3x) \\ -2x + 4y = 1 - 3y \end{cases}$$

☐Combinaisons linéaires ☐Substitution

Calution(c)) :
SOIUHOH(S)	/

Système 6 :
$$\begin{cases} 7x + 5y = -12 \\ -3x + 6y = -4 \end{cases}$$

Combinaisons linéaires Substitution

Solution(s):....

Exercice 2 > La question 3 est réservée aux élèves souhaitant l'option S

Exercise 2 > La question 3 con 1002. Let x = 2x + 3y = 41°) Mettre le système $\begin{cases} 2x + 3y = 4 \\ -2x - 3y = -5 \end{cases}$ sous la forme de deux équations du type y = mx + p puis le résoudre dans \mathbb{R}^2 .

2°) Même question qu'au 1°) avec le système : $\begin{cases} 2x + 3y = -2 \\ 4x + 6y = -4 \end{cases}$

2°) Même question qu'au 1°) avec le système :
$$\begin{cases} 2x + 3y = -2 \\ 4x + 6y = -4 \end{cases}$$

3°) a) En posant $X = \frac{1}{x}$ et $Y = \frac{1}{y}$, exprimer en fonction de X et Y les deux égalités du système : $\begin{cases} \frac{1}{x} + \frac{2}{y} = -5 \\ \frac{2}{x} + \frac{3}{y} = 2 \end{cases}$

b) Résoudre dans \mathbb{R}^2 le nouveau système (avec des X et des Y) par les méthodes habituelles, puis en déduire celle du

système
$$\begin{cases} \frac{1}{x} + \frac{2}{y} = -5\\ \frac{2}{x} + \frac{3}{y} = 2 \end{cases}$$

c) Résoudre dans IR ² le système
$$\begin{cases} 2x^2 + y^2 = 9 \\ & \text{par le changement d'inconnue } X = x^2 \text{ et } Y = y^2 \\ 3x^2 - y^2 = 11 \end{cases}$$

Exercice 3 > Tableur

Lancer le logiciel Excel et arriver à l'écran suivant :

	Α	В	С	D	Е	F	G	Н	- 1	J	
1	Système à	résoudre	а	Х	+	у	=	3			
2	selon la v	aleur de a		Х	+	у	=	5			
3											
4											
5	Pour a =		2								
6	Le système :	a pour soluti	ons:			χ =	-2	&	y =		7
7											
	Α	В	С	D	Е	F	G	Н	- 1	J	
1	Système à	résoudre	а	Х	+	у	=	3			
2	selon la valeur de a			Х	+	у	=	5			
3											
4											

Remarque:

Lorsque a varie, la solution du système doit évoluer :

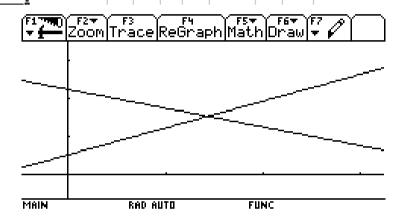
On étudiera avec soin le cas a = 1.

Exercice 4

On considère les deux droites d'équation :

$$y = \frac{5}{7}x + 1$$
 et $y = -\frac{x}{2} + \frac{9}{2}$ et leurs tracés sur l'écran d'une calculatrice graphique.

- a) Les deux droites sont apparemment sécantes. Cela était—il prévisible?
- b) Le pas de graduation de l'axe des abscisses et de l'axe des ordonnées est 2. Un élève conjecture des coordonnées entières (c'est à dire x et y sont des entiers naturels) pour le point d'intersection. Quelles sont–elles?
- c) Ces coordonnées sont-elles réellement celles du point d'intersection ?



-1|&

6

Exercice 5

Résoudre graphiquement un système formé de deux équations (E₁) et (E₂) consiste à :

Pour a =

Le système a pour solutions:

6

- _Mettre les équations (E1) et (E2) sous la forme $y = \dots$
- _dessiner les points dont les coordonnées (x;y) vérifient l'équation (E1)
- _dessiner sur le même dessin les points dont les coordonnées vérifient l'équation (E2)
- _lire sur le graphique les cordonnées des points vérifiant (E1) et (E2) (S'ils existent)

Résoudre graphiquement le système

$$\begin{cases} 2x + y - 4 \\ x - y = -1 \end{cases}$$

Les coordonnées du point d'intersection des deux droites associées au système, que vous avez lues, sont-elles exactes ?

Eléments de solution

Exercice 1

Système	n° 1	n° 2	n° 3	n° 4	11 4 1 11 1	
(x;y) =	$\frac{2}{7}; \frac{1}{7}$	$\frac{5}{3}; \frac{5}{3}$	$\frac{1}{5}$; $\frac{23}{5}$	(1;-2)	(1:-2) 16 41	

Exercice 5

