FORMULAIRE BACCALAURÉAT PROFESSIONNEL Secteur Tertiaire

Fonction f:	Dérivée f ':
f(x)	f'(x)
ax + b	а
x^2	2x
x^3	$3x^2$
1	1
$\frac{-}{x}$	x^2
u(x) + v(x)	u'(x) + v'(x)
a u(x)	a u'(x)

Equation du second degré : $ax^2 + bx + c = 0$

$$\Delta = b^2 - 4ac$$

- Si $\Delta > 0$, deux solutions réelles :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

- Si $\Delta = 0$, une solution réelle double :

$$x_1 = x_2 = -\frac{b}{2a}$$

- Si Δ < 0, aucune solution réelle

- Si
$$\Delta \ge 0$$
, $ax^2 + bx + c = a(x - x_1)(x - x_2)$

Suites arithmétiques :

Terme de rang 1 : u_1 et raison rTerme de rang n : $u_n = u_1 + (n-1)r$

Somme des k premiers termes :

$$u_1 + u_2 + \dots + u_k = \frac{k(u_1 + u_k)}{2}$$

Suites géométriques :

Terme de rang 1 : u_1 et raison q

Terme de rang $n: u_n = u_1 q^{n-1}$

Somme des k premiers termes :

$$u_1 + u_2 + \dots + u_k = u_1 \frac{1 - q^k}{1 - q}$$

Statistiques:

Effectif total
$$N = \sum_{i=1}^{p} n_i$$

Moyenne
$$\bar{x} = \frac{\sum_{i=1}^{p} n_i x_i}{N}$$

Variance
$$V = \frac{\sum_{i=1}^{p} n_i (x_i - \bar{x})^2}{N} = \frac{\sum_{i=1}^{p} n_i x_i^2}{N} - \bar{x}^2$$

Ecart type $\sigma = \sqrt{V}$

<u>Valeur acquise par une suite d'annuités</u> <u>constantes :</u>

 V_n : valeur acquise au moment du dernier versement

a : versement constant

t: taux par période

n : nombre de versements

$$V_n = a \frac{(1+t)^n - 1}{t}$$

<u>Valeur actuelle d'une suite d'annuités</u> constantes :

 V_0 : valeur actuelle une période avant le premier

a : versement constant

t : taux par période

n : nombre de versements

$$V_0 = a \frac{1 - (1 + t)^{-n}}{t}$$

Logarithme népérien : In

(uniquement pour les sections ayant l'alinéa 3 du II)

 $\ln (ab) = \ln a + \ln b$ $\ln (a/b) = \ln a - \ln b$ $\ln\left(a^n\right) = n \ln a$