- 1. Dresser les tableaux de variations des fonctions lnx (logarithme népérien) et e^x (exponentielle).
- 2. Simplifier les expressions suivantes en utilisant les propriétés des fonctions :

$$A = e^{\ln x}$$
 $B = \log($

$$C = \log(10x)$$

$$D = \ln(\frac{1}{x})$$

$$A = e^{\ln x} \qquad B = \log(10^{x}) \qquad C = \log(10x) \qquad D = \ln(\frac{1}{x})$$

$$E = 10^{-\log x} \qquad F = \log(\frac{x}{1000}) \qquad G = \ln(x^{10}) \qquad H = 2^{x} \times 2^{-x}$$

$$G = ln(x^{10})$$

$$H = 2^{x} \times 2^{-x}$$

- 3. Etude de la fonction S, définie par : $S(x) = e^x 2x$
 - 1) l'expression de la dérivée S' est : $S'(x) = e^x 2$ calculer au centième près les coordonnées du point minimum M de la courbe Cs.
 - 2) dresser le tableau de variations de S
 - 3) écrire l'équation de la tangente T à la courbe C_S au point P d'abscisse : $x_P = 1$.
 - 4) construire la courbe C_S de la fonction S, sur l'intervalle : [-2;2]; tracer la tangente T.
- 4. Une entreprise décide de diminuer de 10% par an la production de l'un de ses articles ; celle-ci est actuellement de 50000 unités.
 - 1) montrer que la suite (P_n) des productions annuelles est une **suite géométrique**; préciser les valeurs du 1^{er} terme P₁ et de la raison q de cette suite.
 - 2) exprimer P_n en fonction de P_1 et de q.
 - 3) calculer le nombre N d'années au bout duquel la production sera inférieure à 10000 unités. (résoudre l'inéquation : $P_N \le 10000$)

Barème: 2 pts / 4 pts / 8 pts / 6 pts.