
Oral Second Groupe Mathématiques

Document d'étude

Montée directement sur un tableau électrique, la minuterie coupe automatiquement la lumière au terme d'une durée réglable de 230 secondes à 10 minutes.

(sources: Catalogue Legrand)

Principe de fonctionnement d'une minuterie.

Le composant électrique M possède une alimentation indépendante et permet l'allumage de la lampe.

Lorsqu'on appuie sur le bouton poussoir le condensateur se décharge et le composant M permet immédiatement l'allumage de la lampe.

La lampe reste allumée jusqu'à ce que la tension aux bornes du condensateur atteigne une tension limite $U\ell$ caractéristique du composant.

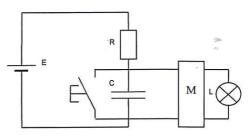


Schéma électrique de la minuterie

Données techniques:

Force électromotrice : E = 24 V

Résistance $R = 50 \text{ k}\Omega$

Capacité du condensateur $C = 1000 \mu F$

Document de travail

1 Calcul numérique

La tension U en fonction du temps t aux bornes d'un condensateur est donnée par la relation :

$$U(t) = E \times \left(1 - e^{-\frac{t}{RC}}\right) \text{ avec}$$

U : tension, en volts, t : temps, en seconde,

E: f.e.m, en volts,

R; résistance, en ohms,

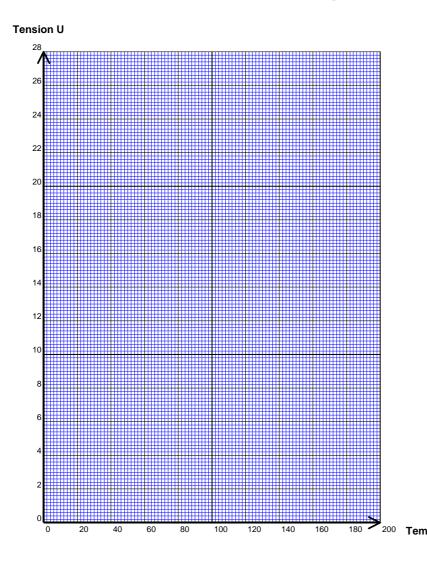
C : capacité, en farad.

Ecrire l'expression de $U(t)$ en utilisant les données techniques :
2.Etude de fonction
On considère la fonction U définie sur $[0; 180]$ par $U(t) = E \times (1 - e^{-0.02 t})$
2.1. Montrer que la fonction dérivée U ' de la fonction U est définie par : $U'(t) = 0.48 \times \mathrm{e}^{-0.02 \mathrm{t}}$
2.2. En déduire rapidement le signe de la fonction dérivée U ' sur $[0; 180]$.
2.3. Compléter le tableau de variation de la fonction U sur l'annexe.

3.Exploitation

En utilisant la représentation graphique précédente, expliquer comment déterminer la durée d'allumage de la lampe sachant que la tension limite $U\ell$ aux bornes du condensateur est fixée à $16~\rm V$.

Document Annexe


Tableau de variation

t	0 180
Signe de $U'(t)$	
Variation de U	

Tableau de valeurs

t	0	10	20	30	40	50	60	80	100	120	150	180
u(t)	0		7,9		13,2		16,8		20,8			23,3

Représentation graphique

Document d'évaluation

- 1) Présentation du document de travail par l'élève
- 2) Demander à l'élève ce qui fait l'objet de l'étude ? (cf doc d'étude)
- 3) Le questionner sur les lacunes du document de travail.
- 4) Question supplémentaire : comment calculer une intégrale ?

PS : Le tableau de valeurs devra être complété et le graphique tracé.