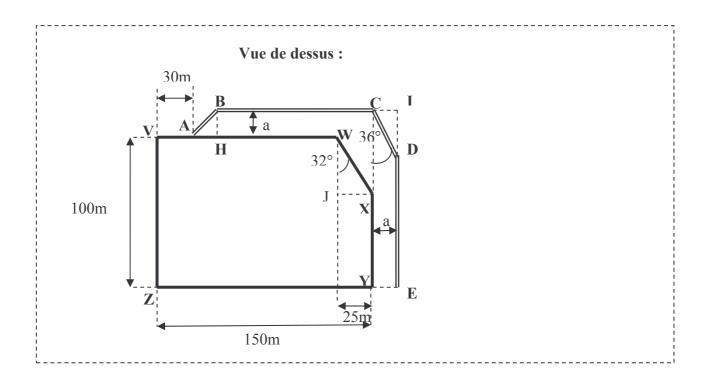
EXAMEN: BP	SESSION 2006	N° du sujet :	05.347
SPECIALITE: Conducteurs d'Engir	SUJET FOLIO : 1/5		
des Travaux Publics (CECTP)			
SECTEUR:			
EPREUVE: MATHEMATIQUES	U 30) COEF:1	VICE – RECTOR	AT
DUREE DE L'EPREUVE : 2H00	COEF:I	NOUVELLE - CALEI	OONIE

L'emploi d'une calculatrice est autorisé, mais pas les échanges pendant l'épreuve Les candidats répondront directement sur l'énoncé, en détaillant leurs calculs

1^{er} problème


La verse (VWXYZ) représentée sur le schéma ci-dessous doit être mise hors d'eau.

La mise hors d'eau se fait par la réalisation d'un caniveau sur la face amont de celle-ci.

Le caniveau à creuser est représenté sur le schéma par la ligne brisée ABCDE. Il a une profondeur de 50cm et une largeur de 40cm.

a = 21,3m (distance séparant la verse du caniveau)

AH = 18,6 m (H : projeté orthogonal de B sur le segment VW)

EXAMEN: BP	SESSION 2006	N° du sujet :	05.347
SPECIALITE: Conducteurs d'Engins	SUJET FOLIO : 2/5		
des Travaux Publics (CECTP)			
SECTEUR:			
EPREUVE: MATHEMATIQUES (U	30) COEF:1	VICE – RECTORAT	Γ
DUREE DE L'EPREUVE : 2H00	COEF:1	NOUVELLE - CALEDO	NIE

- a) Calculer la distance WJ
- b) Calculer l'aire du triangle WXJ
- c) Calculer l'aire totale de la verse.

2/ Réalisation de la verse

On considére que l'aire de la verse est de 14 500 m²

La dernière couche de la verse est épaisse de 1,50 m.

- a) Calculer le volume de cette couche
- b) Les camions ayant permis d'apporter les latérites ont une benne de 30 m³, calculer le nombre de rotations nécessaires pour réaliser cette couche.
- c) La dernière couche de la verse est constituée de latérites rouges de densité 1,8. Calculer le tonnage total transporté pour constituer cette dernière couche.

EXAMEN: BP	SESSION 2006	N° du sujet :	05.347
SPECIALITE: Conducteurs d'Engins	SUJET FOLIO : 3/5		
des Travaux Publics (CECTP)			
SECTEUR:			
EPREUVE: MATHEMATIQUES (U	(30) COEF:1	VICE – RECTORAT	1
DUREE DE L'EPREUVE : 2H00	COEF:I	NOUVELLE - CALEDO	NIE

3/	Calcul	de	la	longueur	dп	caniveau
O/	Calcul	uc	ıu	longucui	uu	CarnyCau

	<u> </u>			A D
a) (∷aı	CHI	er	AK.

- b) Calculer BC
- c) Calculer CD
- d) Calculer DE
- e) Calculer la longueur totale du caniveau

4/ Ecoulement d'eau

L'écoulement des eaux dans le caniveau se fait du point D vers le point E, selon une pente de 2%.

On considère que la distance entre les points D et E est de 92 m.

L'altitude du point D a été mesurée égale à 326 m.

- a) Calculer l'angle de cette pente par rapport à l'horizontale.
- b) Calculer l'altitude du point E.

EXAMEN: BP	SESSION 2006	N° du sujet :	05.347
SPECIALITE: Conducteurs d'Engin	SUJET FOLIO : 4/5		
des Travaux Publics (CECTP)			
SECTEUR:			
EPREUVE: MATHEMATIQUES (U	U 30) COEF:1	VICE – RECTORA	ΛT
DUREE DE L'EPREUVE : 2H00	COEF:1	NOUVELLE - CALEDONII	

2^{ème} problème

Sur une carrière, il faut transporter un volume de 2700 m³ de latérites.

La masse volumique du matériau latéritique foisonné est : 1,7 t/m³.

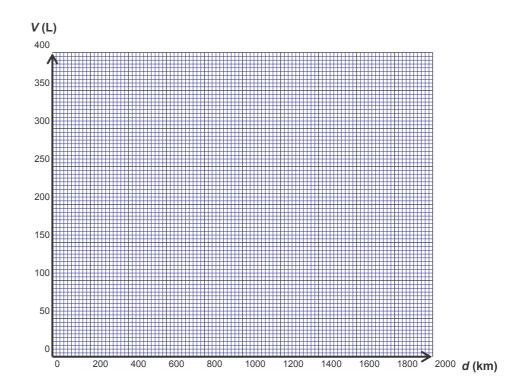
Ces latérites doivent être acheminées vers le wharf situé à une distance de 11 km.

On dispose de cinq camions identiques de charge utile 34 tonnes chacun.

- 1 Pour effectuer ce parcours, un camion vide met 17 mn.
 - Calculer sa vitesse moyenne à vide.
- 2 En charge, le temps de parcours du camion est augmenté de 12%.
 - a. Calculer le temps de parcours. Exprimer le résultat en minutes et secondes.
 - b. Calculer sa vitesse moyenne en charge.

- Combien un camion peut il faire d'allers-retours dans une journée de 9 heures, sachant que le temps total de chargement et de déchargement est de 9 min ?
- 4 Calculer le nombre total d'allers-retours nécessaires par camion pour évacuer le volume de latérite.

EXAMEN: BP	SESSION 2006	N° du sujet :	05.347
SPECIALITE: Conducteurs d'Engins	SUJET FOLIO : 5/5		
des Travaux Publics (CECTP)			
SECTEUR:			
EPREUVE: MATHEMATIQUES (U	30) COEF:1	VICE – RECTOR	RAT
DUREE DE L'EPREUVE : 2H00	COEF:I	NOUVELLE - CALE	DONIE


Le volume V (en L) de gasoil restant dans le réservoir après un parcours de d kilomètres est défini par la relation :

$$V = 350 - 0.19 \times d$$

Soit g la fonction définie par : g(d) = 350 - 0.19d

a. Représenter graphiquement cette fonction dans le repère orthogonal cidessous.

Justifier votre tracé par un tableau de valeurs.

- b. Faire apparaître sur le graphique le nombre de kilomètres que peut parcourir un camion avec le plein de gasoil.
- c. Retrouver le résultat précédent par un calcul.